Package ‘ToTweedieOrNot’

December 1, 2014
Type Package

Title Code for the paper Generalised linear models for aggregate
claims; to Tweedie or not?

Version 1.0

Date 2014-11-27

Author Oscar Alberto Quijano Xacur

Maintainer Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>

Description Main functions used for the simulations and graphs of the paper Generalised linear mod-
els for aggregate claims; to Tweedie or not?

License GPL (>=3)

R topics documented:

ToTweedieOrNot-package 0 v i ittt e e e 1
generate.aggregated.loss.data L 2
generate.simulated.glm.data oL Lo 5
liftcurve L 7
resids.plot 8
tweedie.fso 9
Index 11

ToTweedieOrNot-package

Code for the Article “Generalised linear models for aggregate claims;
to Tweedie or not?”

Description

This package contains the main functions used for the simulations and graphs of the article “Gen-
eralised linear models for aggregate claims; to Tweedie or not?”

Details

2 generate.aggregated.loss.data

Package: ToTweedieOrNot
Type: Package

Version: 1.0

Date: 2014-11-27
License: GPL(>=3)

Author(s)

Oscar Alberto Quijano Xacur.

Maintainer: Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>.

References

Quijano Xacur, Oscar A. and Garrido, José. (2014) Generalised linear models for aggregate claims;
to Tweedie or not?

Jgrgensen, Bent.(1987) The Theory of Dispersion Models Chapman and Hall.

generate.aggregated.loss.data
Simulate aggregated loss data.

Description

This function returns simulated data for aggregate loss given GLM parameters for frequency and
severity. It assumes the same covariates for these two.

Usage

generate.aggregated.loss.data(classes.vector,
beta.vector.freq,
beta.vector.sev,
phi.freq,
phi.sev,
inverse.link.function.freq,
inverse.link.function.sev,
observations.per.class.freq,
names,
sim.function. freq,
sim.function.sev,
response.variable.name = "Response”,
weights.function.freq)

generate.aggregated.loss.data 3

Arguments

classes.vector Vector of integers. Each integer represents the number of classes for each vari-
able.
beta.vector.freq

Coefficients vector for the frequency model.
beta.vector.sev
Coefficients vector for the severity model.

phi.freq Dispersion parameter for the frequency model.

phi.sev Dispersion parameter for the severity model.
inverse.link.function.freq

Inverse of the link function for the frequency model.
inverse.link.function.sev

Inverse of the link function for the severity model.
observations.per.class.freq

Number of observations for each class for the frequency simulation.

names Vector of strings. The strings correspond to the names of the variables.

sim.function.freq
Function that receives the mean-parameter and dispersion parameter and gives
back a simulated value according to the desired random variable for the fre-
quency simulation.

sim.function.sev
Function that receives the mean-parameter and dispersion parameter and gives
back a simulated value according to the desired random variable for the severity
simulation.

response.variable.name

Name for the response variable of the aggregated data.
weights.function.freq

Function that receives an integer and gives back a vector of weights. This
weights are for the frequency model.

Details

This function generates aggregated data assuming independence between frequency and severity.

The coefficient vectors, observations per class, names and classes.vector should be as for the func-
tion generate.simulated.glm.data separately for frequency and severity.

There is no need for a function that gives weights for the severity. These weights are the number of
claims given by the frequency simulation.

Value

This function returns a data frame whose entries are the simulated responses, and the covariates. The
name of the simulated response in the list is the value given to the variable response.variable.name.
This list also has the following entries

Claims Number of claims for each class.

Exposure Total weight for each class.

4 generate.aggregated.loss.data

Note

See notes for the function generate.simulated.glm.data

Author(s)

Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>.

Examples

sim.poisson.function <- function(mean=lambda,phi=1){
rpois(1,lambda=mean/phi)

sim.gamma. function <- function(mean,phi){
rgamma (1, shape=mean, rate=phi);

}

generate.weights <- function(n){
Function that generayes n weights.
p <- 0.7 #probability of weight being 1
bern <- rbinom(n,size=1,prob=p);
bern+(1-bern)*runif(n)

gamma.beta.vector <- ¢(5,-0.1,-0.2,-0.3,-0.4,-0.5,-0.6,-0.7,-0.8,-0.9,-0.10,-0.11,-0.12);
poisson.beta.vector <- -2xgamma.beta.vector;

poisson.beta.vector[1] <- 3;

observations.for.poisson.classes <- sample(200:300,60,replace=TRUE);

This simulates aggregated loss data assuming a Poisson distribution

for the frequency and a gamma distribution for the severity.

aggregated.data <- generate.aggregated.loss.data(
classes.vector=c(2,3,10),
beta.vector.freg=poisson.beta.vector,
beta.vector.sev=gamma.beta.vector,
phi.freg=1,
phi.sev=100,
inverse.link.function.freg=exp,
inverse.link.function.sev=exp,
observations.per.class.freq=observations.for.poisson.classes,
names=c("Gender", "Driver"”, "Make"),
sim.function.freg=sim.poisson.function,
sim.function.sev=sim.gamma.function,
response.variable.name="Loss",
weights.function.freq=generate.weights

)

generate.simulated.glm.data 5

generate.simulated.glm.data

Simulate GLM data.

Description

Simulates GLM data given the response, link function, weights and response distribution. It as-
sumes that all the covariates are categorical.

Usage

generate.simulated.glm.data(classes.vector,

Arguments

beta,
phi,
inverse.link.function,
observations.per.class,
names,
sim.function,
response.variable.name = "Response”,
weights.function,
is.tweedie = FALSE,
)

classes.vector Vector of integers. Each integer represents the number of classes for each vari-

beta
phi

able.
Coefficients vector.

Dispersion parameter.

inverse.link. function

Inverse of the link function.

observations.per.class

names

sim.function

Number of observations for each class.
Vector of strings. The strings correspond to the names of the variables.

Function that receives the mean-parameter and dispersion parameter and gives
back a simulated value according to the desired random variable.

response.variable.name

String that has the name of the response variable.

weights.function

is.tweedie

Function that receives an integer and gives back a vector of weights.

Should be TRUE if the response distribution is tweedie with variance function
power between 1 and 2.

Used in case it is needed to pass extra parameters to the simulation function.

6 generate.simulated.glm.data

Details

beta should have 1+sum(classes.vector[i]-1) elements. observations.per.class should have prod(classes.vector)
elements. names and classes.vector should have the same length.

Value

This function returns a data frame whose entries are the simulated responses, and the covariates. The
name of the simulated response in the list is the value given to the variable response.variable.name.
There is also an entry called Exposure which has the total weight for each class.

Note

Notice that for a discrete random variable the mean of the distribution is given by mean-parameter/disp
while for a continuous random variable the mean is equal to the mean parameter. This is important
to take into consideration when writing the simulation functions to pass as a parameter.

For a distribution that does not have a dispersion parameter, like the Poisson, disp should be set to
1.

Author(s)

Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>.

Examples

#This function simulates one gamma random variable given the mean and
#dispersion parameter.
sim.gamma.function <- function(mean,phi){

rgamma (1, shape=mean, rate=phi);

}

generate.weights <- function(n){
rep(1,n);
3

beta.vector <- ¢(3,-1.2,0.8,-1.35,1.4,-0.55,0.68,-0.77,1.46,.38,-1.11,1.13,1.14);
observations <- sample(100:200,60,replace=TRUE);

simulated.gamma.glm <- generate.simulated.glm.data(classes.vector=c(2,3,10),
beta=beta.vector,
phi=1000,
inverse.link.function=exp,
observations.per.class=observations,
names=c("Gender"”,"Driver"”,"Make"),
sim.function=sim.gamma.function,
response.variable.name="Payments"”,
weights.function=generate.weights,
is.tweedie=FALSE);

sim.poisson.function <- function(mean=lambda,phi=1){

lift.curve 7

rpois(1,lambda=mean/phi) # The mean in this case is the
mean-parameter divided by phi.

}

poisson.beta.vector <- ¢(5,1.2,0.8,1.35,1.4,0.55,0.68,0.77,1.46,.38,1.11,1.13,1.14)
observations.for.poisson.classes <- sample(50:100,60,replace=TRUE);

fake.poisson.data <- generate.simulated.glm.data(classes.vector=c(2,3,10),
beta=poisson.beta.vector,
phi=1,
inverse.link.function=exp,
observations.per.class=observations.for.poisson.classes,
names=c("Gender"”,"Driver","Make"),
sim.function=sim.poisson.function,
response.variable.name="Claims”,
weights.function=generate.weights,
is.tweedie=FALSE);

lift.curve The Lift Chart

Description

Plots a lift chart given the predictions and the observed values or a glm object.

Usage
lift.curve(prediction,
observed,
nsep = 10,

weights = NULL,

title = "Lift curve”,

xtitle = "",

ytitle = "Total claim size")

lift.curve.glm(modelo.glm,

nsep = 10,

title = "Lift Curve”,

xtitle = "",

ytitle = "")

Arguments

prediction Vector that contains the predicted values.
observed Vector that contains the observed values.
modelo.glm glm object.

nsep Number of groups to use for the chart.

8 resids.plot

weights NULL or a vector with the weights for each class.
title Main title for the chart.
xtitle Title for the x-axis.
ytitle Title for the y-axis.
Details

The following steps are used in order to create a lift chart:

1) Using the model generate predictions for the observations. 2) Order the observations increas-
ingly with respect to the predictions. 3) Divide the ordered data in groups with equal number of
observations. 4) Plot the mean observation and mean prediction for each group. 5) If you include
weights, add bars representing the weights for each class.

If weights is not NULL, there will be bars in the chart to represent the weight of each class.

Author(s)

Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>.

References

Article To Tweedie or Not.

Examples

observed <- 1:20+rnorm(20)
predicted<-1:20
lift.curve(predicted, observed)

library(datasets)

glm.object <- glm(weight~group,data=PlantGrowth, family=gaussian)
lift.curve.glm(glm.object)

resids.plot Residual plot for GLMs.

Description

Gives residual plots for GLMs. It gives three reference lines, one for x=0 and two others that
correspond the observed mean plus and minus a factor of the observed standard deviance of the
residuals.

tweedie.fs 9

Usage

resids.plot(glm.object,
sd.factor = 1.5,

rtype = "deviance”,
ptype = "link",
xlab = "Predicted value (linear predictor)"”,
ylab = "Deviance residuals”)
Arguments
glm.object glm object to plot the residuals.
sd. factor Number of standard deviances away for the mean to use for the reference lines.
rtype String indicating the type of the residuals. It can be any type supported by the
residuals function in the stats package.
ptype String indicating the type of prediction. This is used for the x-axis of the plot. It
can be any type supported by the predict function in the predict function in the
stats package.
x1lab Label for the x-axis.
ylab Label for the y-axis.
Details

This function also puts the class number under those residuals that are outside of the region enclosed
by the two reference lines.

Author(s)

Oscar Alberto Quijano Xacur <oscar.quijano@use.startmail.com>.

Examples

library(datasets)

glm.object <- glm(weight~group,data=PlantGrowth, family=gaussian)
resids.plot(glm.object)

tweedie.fs Frequency and Severity means from Tweedie.

Description

Returns frequency and severity prediction from a Tweedie GLM.

Usage

tweedie.fs(mt, p, disp)

10 tweedie.fs

Arguments
mt glm object with a tweedie response.
p variance function power of the tweedie.
disp dispersion parameter.

Details

When a Tweedie GLM is used to model the aggregate loss of a portfolio it is possible to also obtain
estimates for the mean frequency and severity out of it.

p should be between 1 and 2.

Value
This function returns a list with the following elements:

mean.poisson Vector that contains the predicted frequency mean for each class.
mean.gamma Vector that contains the predicted severity mean for each class.

mean. tweedie Vector that contains the predicted aggregate loss mean

Author(s)

Oscar Alberto Quijano Xacur. <oscar.quijano@use.startmail.com>

Examples

library(statmod)# Needed for using the tweedie family with glm
library(tweedie)# Needed in order to simulate the tweedie distribution.

simulated.response <- rtweedie(20,xi=1.5,10,3)
tweedie.glm <- glm(simulated.response~1,family=tweedie(var.power=1.5))
tweedie.fs(tweedie.glm,1.5,3)

Index

generate.aggregated.loss.data, 2
generate.simulated.glm.data, 5

lift.curve, 7
resids.plot, 8

ToTweedieOrNot

(ToTweedieOrNot-package), 1
ToTweedieOrNot-package, 1
tweedie.fs, 9

11

	ToTweedieOrNot-package
	generate.aggregated.loss.data
	generate.simulated.glm.data
	lift.curve
	resids.plot
	tweedie.fs
	Index

